      IEVref: 103-01-12 ID: Language: en Status: backup    Term: interval Synonym1:  Synonym2:  Synonym3:  Symbol: Definition: set of real numbers such that, for any pair (x, y) of elements of the set, any real number z between x and y belongs to the setNOTE There are several kinds of intervals: closed interval from a to b: $\left[a,\text{\hspace{0.17em}}b\right]=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a\le x\le b\right\}$ open interval from a to b: $\right]a,\text{\hspace{0.17em}}b\left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a half-open intervals: $\right]a,\text{\hspace{0.17em}}b\right]=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a and $\left[a,\text{\hspace{0.17em}}b\left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a\le x closed unbounded interval up to b or onward from a: $\right]-\infty ,\text{\hspace{0.17em}}b\right]=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}x\le b\right\}$ and $\left[a,\text{\hspace{0.17em}}+\infty \left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a\le x\right\}$ open unbounded interval up to b or onward from a: $\right]-\infty ,\text{\hspace{0.17em}}b\left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}x and $\right]a,\text{\hspace{0.17em}}+\infty \left[=\left\{x\in R\text{\hspace{0.17em}}|\text{\hspace{0.17em}}a Publication date: 2009-12 Source: Replaces: Internal notes: CO remarks: TC/SC remarks: VT remarks: Domain1: Domain2: Domain3: Domain4: Domain5: