(Untitled) | (Untitled) | (Untitled) | (Untitled) | (Untitled) | Examples |

IEVref: | 801-32-64 | ID: | |

Language: | en | Status: Standard | |

Term: | transfer function, <in underwater sound propagation> | ||

Synonym1: | |||

Synonym2: | |||

Synonym3: | |||

Symbol: | |||

Definition: | solution to the inhomogeneous Helmholtz equation Note 1 to entry: For a point source at ${x}_{0}$, the inhomogeneous Helmholtz equation is$\text{\rho}\nabla \cdot \left[{\text{\rho}}^{-\text{1}}\nabla \left(f;x\right)\right]+{k}^{\text{2}}H\left(f;x\right)=-\text{4\pi \delta}\left(x-{x}_{\text{0}}\right)$, where Note 2 to entry: For a point source in infinite free space, the transfer function is ${R}^{-\text{1}}\text{exp}\left(\text{i}\text{\hspace{0.17em}}k\text{\hspace{0.05em}}R\right)$, where $R=\left|x-{x}_{\text{0}}\right|$. Note 3 to entry: Jensen, F. B., Kuperman, W. A., Porter, M. B. and Schmidt, H. Computational Ocean Acoustics, AIP press Springer-Verlag, ISBN: 978- 1-4419-8677-1, 2011. DOI 10.1007/978-1-4419-8678-8. Page 84-85. of Jensen et al. (2011) refers to propagation loss as "transmission loss". Jensen et al. (2011) refers to the transfer function as the "transmission loss pressure". | ||

Publication date: | 2021-02 | ||

Source: | |||

Replaces: | |||

Internal notes: | |||

CO remarks: | |||

TC/SC remarks: | |||

VT remarks: | |||

Domain1: | |||

Domain2: | |||

Domain3: | |||

Domain4: | |||

Domain5: |

Note 1 to entry: For a point source at ${x}_{0}$, the inhomogeneous Helmholtz equation is$\text{\rho}\nabla \cdot \left[{\text{\rho}}^{-\text{1}}\nabla \left(f;x\right)\right]+{k}^{\text{2}}H\left(f;x\right)=-\text{4\pi \delta}\left(x-{x}_{\text{0}}\right)$, where *ρ* is the medium's time-averaged mass density, *k* is the acoustic wavenumber and $H\left(f;x\right)$ is the transfer function, *x* is the position and *f* is the acoustic frequency.

Note 2 to entry: For a point source in infinite free space, the transfer function is ${R}^{-\text{1}}\text{exp}\left(\text{i}\text{\hspace{0.17em}}k\text{\hspace{0.05em}}R\right)$, where $R=\left|x-{x}_{\text{0}}\right|$.

Note 3 to entry: Jensen, F. B., Kuperman, W. A., Porter, M. B. and Schmidt, H. Computational Ocean Acoustics, AIP press Springer-Verlag, ISBN: 978- 1-4419-8677-1, 2011. DOI 10.1007/978-1-4419-8678-8. Page 84-85. of Jensen et al. (2011) refers to propagation loss as "transmission loss". Jensen et al. (2011) refers to the transfer function as the "transmission loss pressure".