IEVref: | 103-08-10 | ID: | |

Language: | en | Status: Standard | |

Term: | expectation, <of a random variable> | ||

Synonym1: | mean, <of a random variable> [Preferred] | ||

Synonym2: | |||

Synonym3: | |||

Symbol: | |||

Definition: | - for a discrete random variable
*X*taking the values $x}_{i$ with the probabilities $p}_{i$, the sum$E(X)={\displaystyle {\sum}_{i}{p}_{i}}{x}_{i}$ extended for all values $x}_{i$ which can be taken by *X* - for a continuous random variable
*X*having the probability density function $f(x)$, the value of the integral$E(X)={\displaystyle \int x\text{\hspace{0.05em}}f(x)\mathrm{d}x}$ extended for all values of the interval of variation of *X*
| ||

Publication date: | 2009-12 | ||

Source | |||

Replaces: | |||

Internal notes: | 2017-02-20: Editorial revisions in accordance with the information provided in C00020 (IEV 103) - evaluation. JGO | ||

CO remarks: | |||

TC/SC remarks: | |||

VT remarks: | |||

Domain1: | |||

Domain2: | |||

Domain3: | |||

Domain4: | |||

Domain5: |

- for a discrete random variable
*X*taking the values $x}_{i$ with the probabilities $p}_{i$, the sum$E(X)={\displaystyle {\sum}_{i}{p}_{i}}{x}_{i}$

extended for all values $x}_{i$ which can be taken by

*X* - for a continuous random variable
*X*having the probability density function $f(x)$, the value of the integral$E(X)={\displaystyle \int x\text{\hspace{0.05em}}f(x)\mathrm{d}x}$

extended for all values of the interval of variation of

*X*